Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus.

نویسندگان

  • Qianjin Lu
  • Mariana Kaplan
  • Donna Ray
  • Doreen Ray
  • Sima Zacharek
  • David Gutsch
  • Bruce Richardson
چکیده

OBJECTIVE Inhibition of T cell DNA methylation causes autoreactivity in vitro and a lupus-like disease in vivo, suggesting that T cell DNA hypomethylation may contribute to autoimmunity. The hypomethylation effects are due, in part, to overexpression of lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18). Importantly, T cells from patients with active lupus have hypomethylated DNA and overexpress LFA-1 on an autoreactive subset, suggesting that the same mechanism could contribute to human lupus. The present study investigated the nature of the methylation change that affects LFA-1 expression in vitro and in human lupus. METHODS Bisulfite sequencing was used to determine the methylation status of the ITGAL promoter and flanking regions in T cells from lupus patients and healthy subjects, and in T cells treated with DNA methylation inhibitors. "Patch" methylation of promoter sequences in reporter constructs was used to determine the functional significance of the methylation changes. RESULTS Hypomethylation of specific sequences flanking the ITGAL promoter was seen in T cells from patients with active lupus and in T cells treated with 5-azacytidine and procainamide. Patch methylation of this region suppressed ITGAL promoter function. CONCLUSION DNA methylation changes occur in specific sequences that regulate LFA-1 expression in lupus T cells and in the hypomethylation model, indicating that altered methylation of specific genes may play a role in the pathogenesis of lupus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Possible Role of HMGB1 in DNA Demethylation in CD4+ T Cells from Patients with Systemic Lupus Erythematosus

The aberrant activity of CD4(+) T cells in patients with systemic lupus erythematosus (SLE) is associated with DNA hypomethylation of the regulatory regions in CD11a and CD70 genes. Our previous studies demonstrated that Gadd45a contributes to the development of SLE by promoting DNA demethylation in CD4(+) T cells. In this study, we identified proteins that bind to Gadd45a in CD4(+) T cells dur...

متن کامل

Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus

Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, trigger...

متن کامل

Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells.

OBJECTIVE Demethylation of CD11a and CD70 regulatory regions in CD4+ T cells contributes to the development of autoreactivity and overstimulation of autoantibodies. Because growth arrest and DNA damage-induced 45alpha (GADD45alpha) reduces epigenetic silencing of genes by removing methylation marks, this study examined whether the gadd45A gene could contribute to autoimmunity by promoting DNA d...

متن کامل

Epigenetics in systemic lupus erythematosus: leading the way for specific therapeutic agents.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder of an unclearly determined etiology. Past studies, both epidemiological and biological, have implicated epigenetic influences in disease etiology and pathogenesis. Epigenetics describes changes in gene expression not linked to alterations in the underlying genomic sequence, and is most often typified by three modifications: met...

متن کامل

Suppression of LFA-1 Expression by Spermine Is Associated with Enhanced Methylation of ITGAL, the LFA-1 Promoter Area

Spermine and spermidine, natural polyamines, suppress lymphocyte function-associated antigen 1 (LFA-1) expression and its associated cellular functions through mechanisms that remain unknown. Inhibition of ornithine decarboxylase, which is required for polyamine synthesis, in Jurkat cells by 3 mM D,L-alpha-difluoromethylornithine hydrochloride (DFMO) significantly decreased spermine and spermid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arthritis and rheumatism

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2002